文章来源:https://blog.csdn.net/a22222259/article/details/98173091
二维码原理详解
是一种编码方式,它比传统的 Bar Code 条形码能存更多的信息,也能表示更多的数据类型:比如:字符,数字,日文,中文等等。近几年随着我国移动支付等等发展迅猛,变得非常流行,但这个东西好像是日本人发明的...
从字面上看就是用两个维度(水平方向和垂直方向)来进行数据的编码,条形码只利用了一个维度(水平方向)表示信息,在另一个维度(垂直方向)没有意义,所以二维码比条形码有着更高的数据存储容量。
从形成方式上,二维码可以分为两类:堆叠式二维码:在一维条形码的基础上,将多个条形码堆积在一起进行编码,常见的编码标准有PDF417等。这个是美国人发明的,不常用.矩阵式二维码:在一个矩阵空间中通过黑色和白色的方块进行信息的表示,黑色的方块表示1,白色的方块表示0,相应的组合表示了一系列的信息,常见的编码标准有QR 码,在我国非常常用。
由于学习需要,所以看了一些相关知识,觉得这个玩意就是一个密码算法。
二、基本概念
首先,我们先说一下二维码一共有 40 个尺寸。官方叫版本 Version。Version 1 是 21 x 21 的矩阵,Version 2 是 25 x 25 的矩阵,Version 3 是 29 的尺寸,每增加一个 version,就会增加 4 的尺寸,公式是:(V-1)*4 + 21(V是版本号) 最高 Version 40,(40-1)*4+21 = 177,所以最高是 177 x 177 的正方形。
三、二维码组成及对应功能
A:功能图形区:起到定位的作用
a:定位图形
由两条黑白相间的直线组成,便于确定二维码的角度,纠正扭曲。
b:校正图形
仅在版本2以上存在,由三个黑白相间的小正方形嵌套组成,便于确定中心,纠正扭曲。
c:位置探测图形
由三个黑白相间的大正方形嵌套组成,分别位于二维码左上角、右上角、左下角,目的是为了确定二维码的大小和位置。
B:数据编码区:记录了具体的数据信息,纠错信息与版本信息。
d:数据码和纠错码
数据码(Data Code ):存储要存放的数据信息
纠错码(Error Correction Code ):纠错码的存在使得当二维码的数据出现允许范围内的错误时,也可以正确解码。这就是为什么二维码有残缺还能扫出来,也就是为什么有人在二维码的中心位置加入图标。二维码存在4个级别的纠错等级,每个纠错级别可修正的错误与标识见图4,纠错级别越高,可以修正的错误就越多,需要的纠错码的数量也变多,相应的可储存的数据就会减少,版本1的二维码在L级别下可储存25个字符,在H级别下只能储存10个字符。
e:版本信息
仅在版本7以上存在,记录具体的版本信息。
f:格式信息
记录使用的掩码和纠错等级。
g:数据编码
不在详述,见编码规则
C:此外二维码的外围还留有一圈空白区:主要是为了便于识别而存在。
四、编码规则
数据编码的方式有很多,如Numeric mode数字编码。Byte mode,字节编码。Alphanumeric mode 字符编码。Kanji mode 这是日文编码,也是双字节编码。Extended Channel Interpretation (ECI) mode 主要用于特殊的字符集。并不是所有的扫描器都支持这种编码。Structured Append mode 用于混合编码,也就是说,这个二维码中包含了多种编码格式。FNC1 mode 等。
每一个编码方式都有其独有的id进行标识,这些标识会记录在数据区的前端,使得解码器可以根据二维码使用的编码方式对数据进行解码。
1.字符编码示例
Alphanumeric mode 字符编码。包括 0-9,大写的A到Z(没有小写),以及符号$ % * + – . / : 包括空格。这些字符会映射成一个字符索引表。如图6所示:(其中的 SP 是空格,Char 是字符,Value 是其索引值) 编码的过程是把字符两两分组,然后转成下表的 45 进制,然后转成 11bits 的二进制,如果最后有一个落单的,那就转成 6bits 的二进制。而编码模式和字符的个数需要根据不同的 Version 尺寸编成9, 11 或 13 个二进制(如图7)
先简单举个例子让大家觉得很简单明了:
A | B | C | D | E | F |
10 | 11 | 12 | 13 | 14 | 15 |
那么字符串AB=10*45+11。
为什么以长度为二的字符串举例,因为字符编码是两两分组
接下来进入正题:
在 Version 1 的尺寸下,纠错级别为H的情况下,编码: AC-42
第一步:先两两分组:(AC)(-4)(2),然后把每一组转成 11bits 的二进制:
(AC)=10*45+12 等于 462 转成 00111001110
(41,4)=41*45+4 等于 1849 转成 11100111001
(2) 转成 000010 落单就是6bits
第二步:把这些二进制连接起来:00111001110 11100111001 000010,把字符的个数转成二进制 (Version 1-H 为 9 bits ): 5 个字符,5 转成 000000101(9bits图7)
最后,在头上加上编码标识 0010(如图5) 和第 5二步的个数编码: 0010 000000101 00111001110 11100111001 000010
2.数字编码示例
Numeric mode 数字编码,从 0 到9。如果需要编码的数字的个数不是 3 的倍数,那么,最后剩下的 1 或 2 位数会被转成 4 或 7bits,则其它的每 3 位数字会被编成 10,12,14bits,编成多长还要看二维码的尺寸(图7说明了这点)
在 Version 1 的尺寸下,纠错级别为H的情况下,编码: 01234567(和前面的字符编码差不多)
1. 把上述数字分成三组: 012 345 67
2. 把他们转成二进制: 012 转成 0000001100; 345 转成 0101011001; 67 转成 1000011。
3. 把这三个二进制串起来: 0000001100 0101011001 1000011
4. 把数字的个数转成二进制 (version 1-H 是 10 bits ): 8 个数字的二进制是 0000001000
5. 把数字编码的标志 0001 和第 4 步的编码加到前面: 0001 0000001000 0000001100 0101011001 1000011
五、结束符和补齐码
1.结束符
假如我们有个HELLO WORLD的字符串要编码,根据上面的示例二,我们可以得到下面的编码:
编码 | 字符数 | HELLO WORLD的编码 | 加上的结束符 |
0010 | 000001011 | 01100001011 01111000110 10001011100 10110111000 10011010100 001101 | 0000 |
按8bits重排:如果所有的编码加起来不是8个倍数我们还要在后面加上足够的0,比如上面一共有78个bits,所以,我们还要加上2个0,然后按8个bits分好组:
00100000 01011011 00001011 01111000 11010001 01110010 11011100 01001101 01000011 01000000 2.补齐码
最后,如果如果还没有达到我们最大的bits数的限制,我们还要加一些补齐码(Padding Bytes),Padding Bytes就是重复下面的两个bytes:11101100 00010001 (这两个二进制转成十进制是236和17,我也不知道为什么,只知道Spec上是这么写的)关于每一个Version的每一种纠错级别的最大Bits限制,可以参看QR Code Spec的第28页到32页的Table-7一表。
假设我们需要编码的是Version 1的Q纠错级,那么,其最大需要104个bits,而我们上面只有80个bits,所以,还需要补24个bits,也就是需要3个Padding Bytes,我们就添加三个,于是得到下面的编码:
00100000 01011011 00001011 01111000 11010001 01110010 11011100 01001101 01000011 01000000 11101100 00010001 11101100
上面的编码就是数据码了,叫Data Codewords,每一个8bits叫一个codeword,我们还要对这些数据码加上纠错信息。
六、纠错码
见图四及其上面简述(思路有点混乱,排版出了点问题)
那么,QR是怎么对数据码加上纠错码的?首先,我们需要对数据码进行分组,也就是分成不同的Block,然后对各个Block进行纠错编码,对于如何分组,我们可以查看QR Code Spec的第33页到44页的Table-13到Table-22的定义表。注意最后两列
Number of Error Code Correction Blocks | 需要分多少个块 |
Error Correction Code Per Blocks | 每一个块中的code个数,所谓的code的个数,也就是有多少个8bits的字节 |
举个例子:上述的Version 5 + Q纠错级:需要4个Blocks(2个Blocks为一组,共两组),头一组的两个Blocks中各15个bits数据 (k)+ 各 9个bits的纠错码(r)(注:表中的codewords就是一个8bits的byte)(再注:最后一例中的(c, k, r )的公式为:c = k + 2 * r,因为后脚注解释了:纠错码的容量小于纠错码的一半)
下图给一个5-Q的示例(因为二进制写起来会让表格太大,所以,我都用了十进制,我们可以看到每一块的纠错码有18个codewords,也就是18个8bits的二进制数)
注意不要错误以为是上面的编码数据,上面的是Version 1的Q纠错级,而这个是Version 5 + Q纠错级,只是举个例子
注:二维码的纠错码主要是通过Reed-Solomon error correction(里德-所罗门纠错算法)来实现的。由于这个算法相当的复杂,所以...
七、最终编码
放置规则:穿插放置
如果你以为我们可以开始画图,你就错了。二维码的混乱技术还没有玩完,它还要把数据码和纠错码的各个codewords交替放在一起。如何交替呢,规则如下:
对于数据码:把每个块的第一个codewords先拿出来按顺度排列好,然后再取第一块的第二个,如此类推。如:上述示例中的Data Codewords如下:
块1 | 67 | 85 | 70 | 134 | 87 | 38 | 85 | 194 | 119 | 50 | 6 | 18 | 6 | 103 | 38 | |
块2 | 246 | 246 | 66 | 7 | 118 | 134 | 242 | 7 | 38 | 86 | 22 | 198 | 199 | 146 | 6 | |
块3 | 182 | 230 | 247 | 119 | 50 | 7 | 118 | 134 | 87 | 38 | 82 | 6 | 134 | 151 | 50 | 7 |
块4 | 70 | 247 | 118 | 86 | 194 | 6 | 151 | 50 | 16 | 236 | 17 | 236 | 17 | 236 | 17 | 236 |
我们先取第一列的:67, 246, 182, 70
然后再取第二列的:67, 246, 182, 70, 85,246,230 ,247
如此类推:67, 246, 182, 70, 85,246,230 ,247 ……… ……… ,38,6,50,17,7,236
对于纠错码,也是一样:
块1 | 233 | 199 | 11 | 45 | 115 | 247 | 241 | 223 | 229 | 248 | 154 | 117 | 154 | 111 | 86 | 161 | 111 | 39 |
块2 | 87 | 204 | 96 | 60 | 202 | 182 | 124 | 157 | 200 | 134 | 27 | 129 | 209 | 17 | 163 | 163 | 120 | 133 |
块3 | 148 | 116 | 177 | 212 | 76 | 133 | 75 | 242 | 238 | 76 | 195 | 230 | 189 | 10 | 108 | 240 | 192 | 141 |
块4 | 235 | 159 | 5 | 173 | 24 | 147 | 59 | 33 | 106 | 40 | 255 | 172 | 82 | 2 | 131 | 32 | 178 | 236 |
和数据码取的一样,得到:213,87,148,235,199,204,116,159,…… …… 39,133,141,236
然后,再把这两组放在一起(纠错码放在数据码之后)得到:
67, 246, 182, 70, 85, 246, 230, 247, 70, 66, 247, 118, 134, 7, 119, 86, 87, 118, 50, 194, 38, 134, 7, 6, 85, 242, 118, 151, 194, 7, 134, 50, 119, 38, 87, 16, 50, 86, 38, 236, 6, 22, 82, 17, 18, 198, 6, 236, 6, 199, 134, 17, 103, 146, 151, 236, 38, 6, 50, 17, 7, 236, 213, 87, 148, 235, 199, 204, 116, 159, 11, 96, 177, 5, 45, 60, 212, 173, 115, 202, 76, 24, 247, 182, 133, 147, 241, 124, 75, 59, 223, 157, 242, 33, 229, 200, 238, 106, 248, 134, 76, 40, 154, 27, 195, 255, 117, 129, 230, 172, 154, 209, 189, 82, 111, 17, 10, 2, 86, 163, 108, 131, 161, 163, 240, 32, 111, 120, 192, 178, 39, 133, 141, 236
这就是我们的数据区。
最后再加上Reminder Bits,对于某些Version的QR,上面的还不够长度,还要加上Remainder Bits,比如:上述的5Q版的二维码,还要加上7个bits,Remainder Bits加零就好了。关于哪些Version需要多少个Remainder bit,可以参看QR Code Spec的第15页的Table-1的定义表。
八、画出二维码图
1.Position Detection Pattern
首先,先把Position Detection图案画在三个角上。(无论Version如何,这个图案的尺寸就是这么大)
2.Alignment Pattern
然后,再把Alignment图案画上(无论Version如何,这个图案的尺寸就是这么大)
关于Alignment的位置,可以查看QR Code Spec的第81页的Table-E.1的定义表(下表是不完全表格)
下图是根据上述表格中的Version8的一个例子(6,24,42)
3.Timing Pattern
4.Format Information(下图中的蓝色部分)
Format Information是一个15个bits的信息:
这15个bits中包括:
- 5个数据bits:其中,2个bits用于表示使用什么样的Error Correction Level, 3个bits表示使用什么样的Mask
- 10个纠错bits。主要通过BCH Code来计算
然后15个bits还要与101010000010010做XOR(异或)操作。这样就保证不会因为我们选用了00的纠错级别和000的Mask,从而造成全部为白色,这会增加我们的扫描器的图像识别的困难。
5.Version Information(版本7以后需要这个编码,下图中的蓝色部分)
Version Information一共是18个bits,其中包括6个bits的版本号以及12个bits的纠错码
6.数据和数据纠错码
然后是填接我们的最终编码,最终编码的填充方式如下:从左下角开始沿着红线填我们的各个bits,1是黑色,0是白色。如果遇到了上面的非数据区,则绕开或跳过。
7.掩码图案
这样下来,我们的图就填好了,但是,也许那些点并不均衡,如果出现大面积的空白或黑块,会告诉我们扫描识别的困难。所以,我们还要做Masking操作(掩膜操作)QR的Spec中说了,QR有8个Mask你可以使用,如下所示:其中,各个mask的公式在各个图下面。所谓mask,说白了,就是和上面生成的图做XOR操作。Mask只会和数据区进行XOR,不会影响功能区。
其Mask的标识码如下所示:(其中的i,j分别对应于上图的x,y)
下面是Mask后的一些样子,我们可以看到被某些Mask XOR了的数据变得比较零散了。
Mask过后的二维码就成最终的图了。
九、总而言之
二维码的原理可以简单总结为:
将我们想要存储的信息,通过不同的编码格式转换为二进制字符串,字符在变成0和1组成的序列之后,再进行一系列优化算法,就得到了最终的二进制编码.1对应黑色小方块,0对应白色小方块,然后将这些小方块八个一组填进大方块里.就变成了大家看到的二维码了.(说法过于简单,不要深究.当然里面除了要存储的信息还有类似上面所述的定位图案,功能性数据,纠错码,掩码等)
版权所属:NIMA二维码
原文地址:https://nima.vip/article/principle.html
转载时必须以链接形式注明原始出处及本声明。